Files
scwrypts/py/lib/scwrypts/test/random_generator.py

241 lines
6.7 KiB
Python

from csv import writer, QUOTE_NONNUMERIC
from io import StringIO
from json import dumps
from random import randint, uniform, choice
from re import sub
from string import printable
from yaml import safe_dump
from .exceptions import NoDataTypeError, BadGeneratorTypeError
SUPPORTED_DATA_TYPES = None
DEFAULT_OPTIONS = {
'data_types': None,
'minimum': 0,
'maximum': 64,
'depth': 1,
'character_set': None,
'bool_nullable': False,
'str_length': None,
'str_minimum_length': 0,
'str_maximum_length': 32,
'list_length': 8,
'set_length': 8,
'dict_length': 8,
'dict_key_types': {int, float, chr, str},
'csv_columns': None,
'csv_columns_minimum': 1,
'csv_columns_maximum': 16,
'csv_rows': None,
'csv_rows_minimum': 2,
'csv_rows_maximum': 16,
'json_initial_type': dict,
'yaml_initial_type': dict,
}
def generate(data_type=None, options=None):
'''
generate random data with the call of a function
use data_type to generate a single value
use options to set generation options (key = type, value = kwargs)
use options.data_types and omit data_type to generate a random type
'''
if options is None:
options = {**DEFAULT_OPTIONS}
else:
options = DEFAULT_OPTIONS | options
if data_type is None and options['data_types'] is None:
raise NoDataTypeError()
if data_type is None and options['data_types'] is not None:
return generate(data_type=choice(list(options['data_types'])), options=options)
if not isinstance(data_type, str):
data_type = data_type.__name__
if data_type not in Generator.get_supported_data_types():
raise BadGeneratorTypeError(data_type)
return getattr(Generator, f'_{data_type}')(options)
#####################################################################
class Generator:
@classmethod
def get_supported_data_types(cls):
global SUPPORTED_DATA_TYPES # pylint: disable=global-statement
if SUPPORTED_DATA_TYPES is None:
SUPPORTED_DATA_TYPES = {
sub('^_', '', data_type)
for data_type, method in Generator.__dict__.items()
if isinstance(method, staticmethod)
}
return SUPPORTED_DATA_TYPES
@staticmethod
def _bool(options):
return choice([True, False, None]) if options['bool_nullable'] else choice([True, False])
@staticmethod
def _int(options):
return randint(options['minimum'], options['maximum'])
@staticmethod
def _float(options):
return uniform(options['minimum'], options['maximum'])
@staticmethod
def _chr(options):
character_set = options['character_set']
return choice(character_set) if character_set is not None else chr(randint(0,65536))
@staticmethod
def _str(options):
length = options['str_length']
if length is None:
length = generate(int, {
'minimum': options['str_minimum_length'],
'maximum': options['str_maximum_length'],
})
return ''.join((generate(chr, options) for _ in range(length)))
@staticmethod
def _list(options):
if options['depth'] <= 0:
return []
options['depth'] -= 1
if options['data_types'] is None:
options['data_types'] = {bool, int, float, chr, str}
return [ generate(None, options) for _ in range(options['list_length']) ]
@staticmethod
def _set(options):
if options['depth'] <= 0:
return set()
options['depth'] -= 1
if options['data_types'] is None:
options['data_types'] = {bool, int, float, chr, str}
set_options = options | {'data_types': options['data_types'] - {list, dict, set}}
return { generate(None, set_options) for _ in range(options['set_length']) }
@staticmethod
def _dict(options):
if options['depth'] <= 0:
return {}
options['depth'] -= 1
if options['data_types'] is None:
options['data_types'] = {bool, int, float, chr, str, list, set, dict}
if len(options['data_types']) == 0:
return {}
key_options = options | {'data_types': options['dict_key_types']}
return {
generate(None, key_options): generate(None, options)
for _ in range(options['dict_length'])
}
@staticmethod
def _csv(options):
'''
creates a StringIO object containing csv data
'''
if options['data_types'] is None:
options['data_types'] = {int, float, str}
columns = options['csv_columns']
if columns is None:
columns = max(1, generate(int, {
'minimum': options['csv_columns_minimum'],
'maximum': options['csv_columns_maximum'],
}))
rows = options['csv_rows']
if rows is None:
rows = max(1, generate(int, {
'minimum': options['csv_rows_minimum'],
'maximum': options['csv_rows_maximum'],
}))
if options['character_set'] is None:
options['character_set'] = printable
csv = StringIO()
csv_writer = writer(csv, quoting=QUOTE_NONNUMERIC)
options['list_length'] = columns
for line in [ generate(list, options) for _ in range(rows) ]:
csv_writer.writerow(line)
csv.seek(0)
return csv
@staticmethod
def _json(options):
'''
creates a str containing json data
'''
if options['data_types'] is None:
options['data_types'] = {bool, int, float, str, list, dict}
if options['character_set'] is None:
options['character_set'] = printable
options['dict_key_types'] = { int, float, str }
data = generate(options['json_initial_type'], options)
return dumps(data)
@staticmethod
def _yaml(options):
'''
creates a StringIO object containing yaml data
'''
if options['data_types'] is None:
options['data_types'] = {bool, int, float, str, list, dict}
if options['character_set'] is None:
options['character_set'] = printable
options['dict_key_types'] = { int, float, str }
yaml = StringIO()
safe_dump(generate(options['yaml_initial_type'], options), yaml, default_flow_style=False)
yaml.seek(0)
return yaml
#####################################################################
if __name__ == '__main__':
print(generate('json', {'depth': 3}))